Sains Malaysiana
53(9)(2024): 3059-3070
http://doi.org/10.17576/jsm-2024-5309-12
Unravelling Virulence Activities of Hospital
Isolated Acinetobacter baumannii:
Exploring the Prospective Application of Aspirin as an Antivirulence Agent
(Membongkar Aktiviti
Kevirulenan Acinetobacter baumannii Pencilan Hospital: Meneroka Prospektif
Penggunaan Aspirin sebagai Agen Antivirulen)
NURRUL SYAIRAH A SHUKOR1,
KHALIDA KHALIL1, RAMLIZA RAMLI2 &
WAN SYAIDATUL AQMA1,*
1Department
of Biological Sciences & Biotechnology, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department of Medical
Microbiology & Immunology, Medical Faculty, Universiti Kebangsaan
Malaysia Hospital, 56000 Cheras, Kuala Lumpur, Malaysia
Received: 14 March 2024/Accepted: 30 July 2024
Abstract
Acinetobacter baumannii infections pose a global public health threat due
to the increasing resistance to various antimicrobial agents. This study
reports the virulence characteristics of A.
baumannii strains isolated from patients at Hospital Canselor Tuanku Muhriz
UKM (HCTM) and explores the potential of aspirin as an antivirulence agent.
Fourteen A. baumannii isolates from various infection sites exhibited
resistance to at least two antibiotics. Among them, 43% (n=6) displayed high
motility, correlating with the site of isolation. Additionally, 58% (n=7)
formed strong biofilms, 36% (n=5) secreted proteases and 36% (n=5) resisted
oxidative stress. Notably, isolates Ab_H4 and Ab_H10 displayed the highest
virulence, warranting further investigation. Molecular analysis using polymerase
chain reaction (PCR) showed that both Ab_H4 and Ab_H10 possessed the bap and katG genes. Although both strains were capable of secreting
proteases, only Ab_H4 possessed the cpaA gene, suggesting the involvement of other genes in protease secretion in Ab_H10.
Despite high motility, no pilT gene
was detected in any isolates. Treatment with sub-inhibitory concentrations of aspirin
(3.25 mg/ml) restored susceptibility to previously resistant antibiotics,
disrupted biofilm formation and reduced proteases and catalases secretion.
However, no significant impact on bacterial motility was observed.
Interestingly, sub-inhibitory concentrations of aspirin induced biofilm
formation in the environmental strain control (Ab_UKMCC), which was
significantly reduced upon exposure to the MIC. These findings highlight the
high virulence capabilities of several strains isolated from HCTM and show the
potential of aspirin as an antivirulence agent, offering valuable insights for
combating A. baumannii infections.
Keywords: Acinetobacter baumannii; antivirulence; aspirin; biofilm; virulence
Abstrak
Jangkitan Acinetobacter baumannii adalah
ancaman kesihatan awam global kerana peningkatan kerintangan terhadap pelbagai
agen antimikrob. Kajian ini melaporkan ciri virulen A. baumannii yang dipencilkan daripada pesakit di Hospital Canselor
Tuanku Muhriz UKM (HCTM) dan meneroka potensi aspirin sebagai agen antivirulen.
Empat belas strain A. baumannii daripada
pelbagai tapak jangkitan menunjukkan kerintangan terhadap sekurang-kurangnya
dua antibiotik. Sebanyak 43% (n=6) pencilan menunjukkan tahap motiliti yang
tinggi berkolerasi dengan lokasi pencilan. Selain itu, 58% (n=7) membentuk
biofilem yang kuat, 36% (n=5) merembeskan protease dan 36% (n=5) menahan
tekanan oksidatif. Pencilan Ab_H4 dan Ab_H10 menunjukkan kevirulenan tertinggi yang
memerlukan penyelidikan lanjutan. Analisis molekul menggunakan tindak balas
berantai polimerase (PCR) menunjukkan kedua-dua Ab_H4 dan Ab_H10 mempunyai gen bap dan katG. Walaupun kedua-dua strain mampu menghasilkan protease, hanya
Ab_H4 memiliki gen cpaA, mencadangkan
keterlibatan gen lain dalam rembesan protease di Ab_H10. Walaupun mempunyai
motiliti tinggi, tiada gen pilT dikesan dalam mana-mana pencilan. Rawatan dengan kepekatan sub-perencatan minimum
aspirin (3.25 mg/mL) mengembalikan kerentanan terhadap antibiotik yang
sebelumnya adalah rintang, mengurangkan pembentukan biofilem, pengeluaran
protease dan katalase tetapi tiada kesan yang signifikan dalam motiliti
bakteria. Tambahan lagi, kepekatan sub-perencatan minimum aspirin merangsang
pembentukan biofilem dalam strain pencilan persekitaran (Ab_UKMCC), namun
pengurangan ketara diperhatikan apabila terdedah kepada kepekatan minimum
perencatan (MIC) aspirin. Penemuan ini menunjukkan keupayaan virulen yang
tinggi bagi beberapa strain A. baumannii pencilan
HCTM serta menunjukkan potensi aspirin sebagai agen antivirulen, menawarkan
sumbangan bernilai dalam usaha berterusan untuk memerangi jangkitan A. baumannii.
Kata
kunci: Acinetobacter
baumannii;
antivirulens; aspirin; biofilem; virulen
REFERENCES
Abirami, G., Durgadevi, R., Velmurugan, P. & Ravi, A.V. 2021. Gene
expressing analysis indicates the role of Pyrogallol as a novel antibiofilm and
antivirulence agent against Acinetobacter baumannii. Archives of Microbiology 203(1): 251-260.
Alfizah, H., Sarah, O.S. & Noraziah, M.Z. 2015. Interaction of Imipenem and Tigecycline against Carbapenem-resistant Acinetobacter baumanii:
The relativity of synergism. Sains Malaysiana 44(7): 1061-1065.
Antunes, L.C.S., Imperi, F., Carattoli, A. & Visca, P. 2011. Deciphering the multifactorial nature
of Acinetobacter baumannii pathogenicity. PLoS
ONE 6(8): e22674.
Babaei, M.R., Sulong, A., Hamat, R.A., Nordin, S.A. & Neela, V.K.
2015. Extremely high prevalence of antiseptic resistant Quaternary Ammonium
Compound E gene among clinical isolates of multiple drug resistant Acinetobacter
baumannii in Malaysia. Annals of Clinical Microbiology and
Antimicrobials 14: 11.
Bhargava, N., Sharma, P. & Capalash, N. 2014. Pyocyanin stimulates quorum
sensing-mediated tolerance to oxidative stress and increases persister cell
populations in Acinetobacter baumannii. Infection and Immunity 82(8): 3417-3425.
Biemer, J.J. 1973. Antimicrobial susceptibility testing by the Kirby-Bauer
disc diffusion method. Annals of Clinical
Laboratory Science 3(2): 135-140.
Biglari, S., Hanafiah, A., Mohd Puzi, S., Ramli, R., Rahman, M. &
Lopes, B.S. 2017. Antimicrobial resistance mechanisms and genetic diversity of
multidrug-resistant Acinetobacter baumannii isolated from a teaching
hospital in Malaysia. Microbial Drug Resistance 23(5): 545-555.
Blaschke, U., Skiebe, E. & Wilharm, G. 2021. Novel genes required
for surface-associated motility in Acinetobacter baumannii. Current
Microbiology 78(4): 1509-1528.
Centers for Disease Control (CDC). 2019. CDC’s Antibiotic Resistance Threats Report. United States: Centers
for Disease Control and Prevention.
Chapartegui-González,
I., Lázaro-Díez, M., Bravo, Z., Navas, J., Icardo, J.M. & Ramos-Vivas, J. 2018. Acinetobacter baumannii maintains its virulence after
long-time starvation. PLoS ONE 13(8):
e0201961.
Clemmer, K.M., Bonomo, R.A. & Rather, P.N. 2011. Genetic analysis of
surface motility in Acinetobacter baumannii. Microbiology 157(9):
2534-2544.
Cosgaya, C., Ratia, C., Marí-Almirall, M., Rubio, L., Higgins,
P.G., Seifert, H., Roca, I. & Vila, J. 2019. In vitro and in vivo virulence potential of the emergent species of the Acinetobacter baumannii (Ab) group. Frontiers in Microbiology 10: 2429.
El-Mowafy, S.A., Abd El Galil, K.H., El-Messery, S.M. & Shaaban,
M.I. 2014. Aspirin is an efficient inhibitor of quorum sensing, virulence and
toxins in Pseudomonas aeruginosa. Microbial
Pathogenesis 74(1): 25-32.
English, B.K. & Gaur, A.H. 2010. The use and abuse of antibiotics
and the development of antibiotic resistance. Advances in Experimental Medicine and Biology 659(8): 73-82.
Firdose, A., Toshinari, M., Sukri, M.A.M., Yasin, N.H.M., Sabturani, N.
& Aqma, W.S. 2024. Antibacterial mechanism of Pseudomonas aeruginosa UKMP14T rhamnolipids against Multidrug resistant Acinetobacter baumannii. Microbial
Pathogenesis 193: 106743.
García-Quintanilla, M., Caro-Vega, J.M., Pulido, M.R., Moreno-Martínez,
P., Pachón, J. & McConnell, M.J. 2016. Inhibition of LpxC increases
antibiotic susceptibility in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy 60(8): 5076-5079.
Harding, C.M., Hennon, S.W. & Feldman, M.F. 2018. Uncovering the
mechanisms of Acinetobacter baumannii virulence. Nature Reviews Microbiology 16(2):
91-102.
Hetta, H.F., Al-Kadmy, I.M.S., Khazaal, S.S., Abbas, S., Suhail, A.,
El-Mokhtar, M.A., Ellah, N.H.A., Ahmed, E.A., Abd-ellatief, R.B., El-Masry,
E.A., Batiha, G.E.S., Elkady, A.A., Mohamed, N.A. & Algammal, A.M. 2021. Antibiofilm and antivirulence potential
of silver nanoparticles against multidrug-resistant Acinetobacter baumannii. Scientific Reports 11(1): 10751.
Janahiraman, S., Aziz, M.N., Hoo, F.K., P’ng, H.S., Boo, Y.L.,
Ramachandran, V. & Shamsuddin, A.F. 2015. Resistance patterns of multidrug
resistant Acinetobacter baumannii in an ICU of a tertiary care hospital,
Malaysia. Pakistan Journal of Medical Sciences 31(6):
1383-1388.
Junior, N., Barros, R.D.A., Vital, C.E. & Barbosa, S.L. 2020.
Enzymatic assay of protease using azocasein as substrate enzymatic assay of
protease using azocasein as substrate. Protocols.io 10(1): 6-8.
Kabic, J., Novovic, K., Kekic, D., Trudic, A., Opavski, N., Dimkic, I.
& Gajic, I. 2023. Comparative genomics and molecular epidemiology of
colistin-resistant Acinetobacter baumannii. Computational and
Structural Biotechnology Journal 21: 574-585.
Kraus, C.N. 2008. Low hanging
fruit in infectious disease drug development. Current Opinion in Microbiology 11(5): 434-438.
Kyriakidis, I., Vasileiou, E., Pana, Z.D. & Tragiannidis, A. 2021. Acinetobacter baumannii antibiotic
resistance mechanisms. Pathogens 10(3): 373.
Li, Y., Wang, B., Lu, F., Ahn, J., Zhang, W., Cai, L., Xu, J., Yin, Y.,
Cao, Q., Ren, Z. & He, X. 2022.
Synergistic inhibitory effect of Polymyxin B in combination with Ceftazidime
against robust biofilm formed by Acinetobacter baumannii with genetic deficiency in
AbaI/AbaR quorum sensing. Microbiology Spectrum 10(1): 176-178.
Lima, W.G., Brito, J.C.M., Cardoso, B.G., Cardoso, V.N., de Paiva, M.C.,
de Lima, M.E. & Fernandes, S.O.A. 2020. Rate of polymyxin
resistance among Acinetobacter baumannii recovered from hospitalized
patients: A systematic review and meta-analysis. European Journal of
Clinical Microbiology & Infectious Diseases 39: 1427-1438.
Modarresi, F., Azizi, O., Shakibaie, M.R., Motamedifar, M., Valibeigi,
B. & Mansouri, S. 2015. Effect of iron on expression of efflux pump (adeABC)
and quorum sensing (luxI, luxR) genes in clinical isolates of Acinetobacter
baumannii. Apmis 123(11): 959-968.
Moubareck, C.A. & Halat, D.H. 2020. Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance
traits in a threatening nosocomial pathogen. Antibiotics 9(3): 119-121.
Nait Chabane, Y., Ben Mlouka, M., Alexandre, S., Nicol, M., Marti, S.,
Pestel-Caron, M., Vila, J., Jouenne, T. & Dé, E. 2014. Virstatin inhibits
biofilm formation and motility of Acinetobacter baumannii. BMC Microbiology 14: 62.
Peleg, A.Y., Seifert, H. & Paterson, D.L. 2008. Acinetobacter
baumannii: Emergence of a successful pathogen. Clinical Microbiology Reviews 21(3): 538-582.
Rani, F.M., Rahman, N.I.A., Ismail, S., Alattraqchi, A.G., Cleary, D.W.,
Clarke, S.C. & Yeo, C.C. 2017. Acinetobacter spp. infections in
Malaysia: A review of antimicrobial resistance trends, mechanisms and
epidemiology. Frontiers in Microbiology https://doi.org/10.3389/fmicb.2017.02479
Raorane, C.J., Lee, J.H., Kim, Y.G., Rajasekharan, S.K.,
García-Contreras, R. & Lee, J. 2019. Antibiofilm and antivirulence
efficacies of flavonoids and curcumin against Acinetobacter baumannii. Frontiers in Microbiology 10(5): 990-995.
Russo,
A., Gavaruzzi, F., Ceccarelli, G., Borrazzo, C., Oliva, A., Alessandri, F.,
Magnanimi, E., Pugliese, F. & Venditti, M. 2022. Multidrug-resistant Acinetobacter baumannii infections in COVID-19 patients hospitalized in intensive
care unit. Infection 50(1): 83-92.
Sato, Y., Unno, Y., Miyazaki, C., Ubagai, T. & Ono, Y. 2019.
Multidrug-resistant Acinetobacter baumannii resists reactive oxygen
species and survives in macrophages. Scientific Reports 9:
17462.
Seleem, N.M., Abd El Latif, H.K., Shaldam, M.A. & El-Ganiny, A.
2020. Drugs with new lease of life as quorum sensing inhibitors: For combating
MDR Acinetobacter baumannii infections. European Journal of Clinical Microbiology
and Infectious Diseases 39(9):
1687-1702.
Selvaraj, A., Valliammai, A., Sivasankar, C., Suba, M., Sakthivel, G.
& Pandian, S.K. 2020. Antibiofilm and antivirulence efficacy of myrtenol
enhances the antibiotic susceptibility of Acinetobacter baumannii. Scientific Reports 10: 21975.
Stepanović, S., Vuković, D., Hola, V., Di Bonaventura, G.,
Djukić, S., Ćircović, I. & Ruzicka, F. 2007. Quantification of biofilm
in microtiter plates. Apmis 115(8):
891-899.
Sun, D., Crowell, S.A., Harding, C.M., De Silva, P.M., Harrison, A.,
Fernando, D.M., Mason, K.M., Santana, E., Loewen, P.C., Kumar, A. & Liu, Y.
2016. KatG and KatE confer Acinetobacter resistance to hydrogen peroxide but sensitize bacteria to killing by phagocytic
respiratory burst. Life Sciences 148(8): 31-40.
Thompson, M.G., Corey, B.W., Si, Y., Craft, D.W. & Zurawski, D.V.
2012. Antibacterial activities of iron chelators against common nosocomial
pathogens. Antimicrobial Agents and
Chemotherapy 56(10): 5419-5421.
Tilley, D., Law, R., Warren, S., Samis, J.A. & Kumar, A. 2014. CpaA
a novel protease from Acinetobacter baumannii clinical isolates
deregulates blood coagulation. FEMS Microbiology Letters 356(1):
53-61.
Vázquez-López, R., Solano-Gálvez, S.G., Vignon-Whaley, J.J.J., Vaamonde,
J.A.A., Alonzo, L.A.P., Reséndiz, A.R., Álvarez, M.M., López, E.N.V.,
Franyuti-Kelly, G., Álvarez-Hernández, D.A., Guzmán, V.M., Bañuelos, J.E.J.,
Felix, J.M., Barrios, J.A.G. & Fortes, T.B. 2020. Acinetobacter baumannii resistance: A real challenge
for clinicians. Antibiotics 9(4):
205.
Vijayakumar, S., Rajenderan, S., Laishram, S., Anandan, S., Balaji, V.
& Biswas, I. 2016. Biofilm formation and motility depend on the nature of
the Acinetobacter baumannii clinical
isolates. Frontiers in Public Health 22(6): 105-112.
Wong, D., Nielsen, T.B., Bonomo, R.A., Pantapalangkoor, P., Luna, B.
& Spellberg, B. 2017. Clinical and pathophysiological overview of Acinetobacter infections: A century of
challenges. Clinical Microbiology Reviews 30(1): 409-447.
Wright, M.S., Mountain, S., Beeri, K. & Adams, M.D. 2017. Assessment
of insertion sequence mobilization as an adaptive response to oxidative stress
in Acinetobacter baumannii using
IS-seq. Journal of Bacteriology 199(9): 1110-1128.
Zimmermann, P. & Curtis, N. 2018. The effect of aspirin on
antibiotic susceptibility. Expert Opinion on Therapeutic Targets 22(11):
967-972.
Zimmermann, P. & Curtis, N. 2017. Antimicrobial effects of
antipyretics. Antimicrobial Agents and Chemotherapy 61(4):
e02268-16.
*Corresponding
author; email: syaidatul@ukm.edu.my
|