Sains Malaysiana 53(9)(2024): 3059-3070

http://doi.org/10.17576/jsm-2024-5309-12

 

Unravelling Virulence Activities of Hospital Isolated Acinetobacter baumannii: Exploring the Prospective Application of Aspirin as an Antivirulence Agent

(Membongkar Aktiviti Kevirulenan Acinetobacter baumannii Pencilan Hospital: Meneroka Prospektif Penggunaan Aspirin sebagai Agen Antivirulen)

 

NURRUL SYAIRAH A SHUKOR1, KHALIDA KHALIL1, RAMLIZA RAMLI2 & WAN SYAIDATUL AQMA1,*

 

1Department of Biological Sciences & Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Medical Microbiology & Immunology, Medical Faculty, Universiti Kebangsaan Malaysia Hospital, 56000 Cheras, Kuala Lumpur, Malaysia

 

Received: 14 March 2024/Accepted: 30 July 2024

 

Abstract

Acinetobacter baumannii infections pose a global public health threat due to the increasing resistance to various antimicrobial agents. This study reports the virulence characteristics of A. baumannii strains isolated from patients at Hospital Canselor Tuanku Muhriz UKM (HCTM) and explores the potential of aspirin as an antivirulence agent. Fourteen A. baumannii isolates from various infection sites exhibited resistance to at least two antibiotics. Among them, 43% (n=6) displayed high motility, correlating with the site of isolation. Additionally, 58% (n=7) formed strong biofilms, 36% (n=5) secreted proteases and 36% (n=5) resisted oxidative stress. Notably, isolates Ab_H4 and Ab_H10 displayed the highest virulence, warranting further investigation. Molecular analysis using polymerase chain reaction (PCR) showed that both Ab_H4 and Ab_H10 possessed the bap and katG genes. Although both strains were capable of secreting proteases, only Ab_H4 possessed the cpaA gene, suggesting the involvement of other genes in protease secretion in Ab_H10. Despite high motility, no pilT gene was detected in any isolates. Treatment with sub-inhibitory concentrations of aspirin (3.25 mg/ml) restored susceptibility to previously resistant antibiotics, disrupted biofilm formation and reduced proteases and catalases secretion. However, no significant impact on bacterial motility was observed. Interestingly, sub-inhibitory concentrations of aspirin induced biofilm formation in the environmental strain control (Ab_UKMCC), which was significantly reduced upon exposure to the MIC. These findings highlight the high virulence capabilities of several strains isolated from HCTM and show the potential of aspirin as an antivirulence agent, offering valuable insights for combating A. baumannii infections.

 

Keywords: Acinetobacter baumannii; antivirulence; aspirin; biofilm; virulence

 

Abstrak

Jangkitan Acinetobacter baumannii adalah ancaman kesihatan awam global kerana peningkatan kerintangan terhadap pelbagai agen antimikrob. Kajian ini melaporkan ciri virulen A. baumannii yang dipencilkan daripada pesakit di Hospital Canselor Tuanku Muhriz UKM (HCTM) dan meneroka potensi aspirin sebagai agen antivirulen. Empat belas strain A. baumannii daripada pelbagai tapak jangkitan menunjukkan kerintangan terhadap sekurang-kurangnya dua antibiotik. Sebanyak 43% (n=6) pencilan menunjukkan tahap motiliti yang tinggi berkolerasi dengan lokasi pencilan. Selain itu, 58% (n=7) membentuk biofilem yang kuat, 36% (n=5) merembeskan protease dan 36% (n=5) menahan tekanan oksidatif. Pencilan Ab_H4 dan Ab_H10 menunjukkan kevirulenan tertinggi yang memerlukan penyelidikan lanjutan. Analisis molekul menggunakan tindak balas berantai polimerase (PCR) menunjukkan kedua-dua Ab_H4 dan Ab_H10 mempunyai gen bap dan katG. Walaupun kedua-dua strain mampu menghasilkan protease, hanya Ab_H4 memiliki gen cpaA, mencadangkan keterlibatan gen lain dalam rembesan protease di Ab_H10. Walaupun mempunyai motiliti tinggi, tiada gen pilT dikesan dalam mana-mana pencilan. Rawatan dengan kepekatan sub-perencatan minimum aspirin (3.25 mg/mL) mengembalikan kerentanan terhadap antibiotik yang sebelumnya adalah rintang, mengurangkan pembentukan biofilem, pengeluaran protease dan katalase tetapi tiada kesan yang signifikan dalam motiliti bakteria. Tambahan lagi, kepekatan sub-perencatan minimum aspirin merangsang pembentukan biofilem dalam strain pencilan persekitaran (Ab_UKMCC), namun pengurangan ketara diperhatikan apabila terdedah kepada kepekatan minimum perencatan (MIC) aspirin. Penemuan ini menunjukkan keupayaan virulen yang tinggi bagi beberapa strain A. baumannii pencilan HCTM serta menunjukkan potensi aspirin sebagai agen antivirulen, menawarkan sumbangan bernilai dalam usaha berterusan untuk memerangi jangkitan A. baumannii.

 

Kata kunci: Acinetobacter baumannii; antivirulens; aspirin; biofilem; virulen

 

REFERENCES

Abirami, G., Durgadevi, R., Velmurugan, P. & Ravi, A.V. 2021. Gene expressing analysis indicates the role of Pyrogallol as a novel antibiofilm and antivirulence agent against Acinetobacter baumannii. Archives of Microbiology 203(1): 251-260.

Alfizah, H., Sarah, O.S. & Noraziah, M.Z. 2015. Interaction of Imipenem and Tigecycline against Carbapenem-resistant Acinetobacter baumanii: The relativity of synergism. Sains Malaysiana 44(7): 1061-1065.

Antunes, L.C.S., Imperi, F., Carattoli, A. & Visca, P.  2011. Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PLoS ONE 6(8): e22674.

Babaei, M.R., Sulong, A., Hamat, R.A., Nordin, S.A. & Neela, V.K. 2015. Extremely high prevalence of antiseptic resistant Quaternary Ammonium Compound E gene among clinical isolates of multiple drug resistant Acinetobacter baumannii in Malaysia. Annals of Clinical Microbiology and Antimicrobials 14: 11.

Bhargava, N., Sharma, P. & Capalash, N.  2014. Pyocyanin stimulates quorum sensing-mediated tolerance to oxidative stress and increases persister cell populations in Acinetobacter baumannii. Infection and Immunity 82(8): 3417-3425.

Biemer, J.J. 1973. Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Annals of Clinical Laboratory Science 3(2): 135-140.

Biglari, S., Hanafiah, A., Mohd Puzi, S., Ramli, R., Rahman, M. & Lopes, B.S. 2017. Antimicrobial resistance mechanisms and genetic diversity of multidrug-resistant Acinetobacter baumannii isolated from a teaching hospital in Malaysia. Microbial Drug Resistance 23(5): 545-555.

Blaschke, U., Skiebe, E. & Wilharm, G. 2021. Novel genes required for surface-associated motility in Acinetobacter baumanniiCurrent Microbiology 78(4): 1509-1528.

Centers for Disease Control (CDC). 2019. CDC’s Antibiotic Resistance Threats Report. United States: Centers for Disease Control and Prevention.

Chapartegui-González, I., Lázaro-Díez, M., Bravo, Z., Navas, J., Icardo, J.M. & Ramos-Vivas, J.  2018. Acinetobacter baumannii maintains its virulence after long-time starvation. PLoS ONE 13(8): e0201961.

Clemmer, K.M., Bonomo, R.A. & Rather, P.N. 2011. Genetic analysis of surface motility in Acinetobacter baumanniiMicrobiology 157(9): 2534-2544.

Cosgaya, C., Ratia, C., Marí-Almirall, M., Rubio, L., Higgins, P.G., Seifert, H., Roca, I. & Vila, J. 2019. In vitro and in vivo virulence potential of the emergent species of the Acinetobacter baumannii (Ab) group. Frontiers in Microbiology 10: 2429.

El-Mowafy, S.A., Abd El Galil, K.H., El-Messery, S.M. & Shaaban, M.I. 2014. Aspirin is an efficient inhibitor of quorum sensing, virulence and toxins in Pseudomonas aeruginosa. Microbial Pathogenesis 74(1): 25-32.

English, B.K. & Gaur, A.H. 2010. The use and abuse of antibiotics and the development of antibiotic resistance. Advances in Experimental Medicine and Biology 659(8): 73-82.

Firdose, A., Toshinari, M., Sukri, M.A.M., Yasin, N.H.M., Sabturani, N. & Aqma, W.S. 2024. Antibacterial mechanism of Pseudomonas aeruginosa UKMP14T rhamnolipids against Multidrug resistant Acinetobacter baumanniiMicrobial Pathogenesis 193: 106743.

García-Quintanilla, M., Caro-Vega, J.M., Pulido, M.R., Moreno-Martínez, P., Pachón, J. & McConnell, M.J. 2016. Inhibition of LpxC increases antibiotic susceptibility in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy 60(8): 5076-5079.

Harding, C.M., Hennon, S.W. & Feldman, M.F. 2018. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nature Reviews Microbiology 16(2): 91-102.

Hetta, H.F., Al-Kadmy, I.M.S., Khazaal, S.S., Abbas, S., Suhail, A., El-Mokhtar, M.A., Ellah, N.H.A., Ahmed, E.A., Abd-ellatief, R.B., El-Masry, E.A., Batiha, G.E.S., Elkady, A.A., Mohamed, N.A. & Algammal, A.M.  2021. Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii. Scientific Reports 11(1): 10751.

Janahiraman, S., Aziz, M.N., Hoo, F.K., P’ng, H.S., Boo, Y.L., Ramachandran, V. & Shamsuddin, A.F. 2015. Resistance patterns of multidrug resistant Acinetobacter baumannii in an ICU of a tertiary care hospital, Malaysia. Pakistan Journal of Medical Sciences 31(6): 1383-1388.

Junior, N., Barros, R.D.A., Vital, C.E. & Barbosa, S.L. 2020. Enzymatic assay of protease using azocasein as substrate enzymatic assay of protease using azocasein as substrate. Protocols.io 10(1): 6-8.

Kabic, J., Novovic, K., Kekic, D., Trudic, A., Opavski, N., Dimkic, I. & Gajic, I. 2023. Comparative genomics and molecular epidemiology of colistin-resistant Acinetobacter baumanniiComputational and Structural Biotechnology Journal 21: 574-585.

Kraus, C.N.  2008. Low hanging fruit in infectious disease drug development. Current Opinion in Microbiology 11(5): 434-438.

Kyriakidis, I., Vasileiou, E., Pana, Z.D. & Tragiannidis, A. 2021. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens 10(3): 373.

Li, Y., Wang, B., Lu, F., Ahn, J., Zhang, W., Cai, L., Xu, J., Yin, Y., Cao, Q., Ren, Z. & He, X.  2022. Synergistic inhibitory effect of Polymyxin B in combination with Ceftazidime against robust biofilm formed by Acinetobacter baumannii with genetic deficiency in AbaI/AbaR quorum sensing. Microbiology Spectrum 10(1): 176-178.

Lima, W.G., Brito, J.C.M., Cardoso, B.G., Cardoso, V.N., de Paiva, M.C., de Lima, M.E. & Fernandes, S.O.A. 2020. Rate of polymyxin resistance among Acinetobacter baumannii recovered from hospitalized patients: A systematic review and meta-analysis. European Journal of Clinical Microbiology & Infectious Diseases 39: 1427-1438.

Modarresi, F., Azizi, O., Shakibaie, M.R., Motamedifar, M., Valibeigi, B. & Mansouri, S. 2015. Effect of iron on expression of efflux pump (adeABC) and quorum sensing (luxI, luxR) genes in clinical isolates of Acinetobacter baumanniiApmis 123(11): 959-968.

Moubareck, C.A. & Halat, D.H. 2020. Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics 9(3): 119-121.

Nait Chabane, Y., Ben Mlouka, M., Alexandre, S., Nicol, M., Marti, S., Pestel-Caron, M., Vila, J., Jouenne, T. & Dé, E. 2014. Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii. BMC Microbiology 14: 62.

Peleg, A.Y., Seifert, H. & Paterson, D.L. 2008. Acinetobacter baumannii: Emergence of a successful pathogen. Clinical Microbiology Reviews 21(3): 538-582.

Rani, F.M., Rahman, N.I.A., Ismail, S., Alattraqchi, A.G., Cleary, D.W., Clarke, S.C. & Yeo, C.C.  2017. Acinetobacter spp. infections in Malaysia: A review of antimicrobial resistance trends, mechanisms and epidemiology. Frontiers in Microbiology https://doi.org/10.3389/fmicb.2017.02479

Raorane, C.J., Lee, J.H., Kim, Y.G., Rajasekharan, S.K., García-Contreras, R. & Lee, J. 2019. Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Frontiers in Microbiology 10(5): 990-995.

Russo, A., Gavaruzzi, F., Ceccarelli, G., Borrazzo, C., Oliva, A., Alessandri, F., Magnanimi, E., Pugliese, F. & Venditti, M. 2022. Multidrug-resistant Acinetobacter baumannii infections in COVID-19 patients hospitalized in intensive care unit. Infection 50(1): 83-92.

Sato, Y., Unno, Y., Miyazaki, C., Ubagai, T. & Ono, Y. 2019. Multidrug-resistant Acinetobacter baumannii resists reactive oxygen species and survives in macrophages. Scientific Reports 9: 17462.

Seleem, N.M., Abd El Latif, H.K., Shaldam, M.A. & El-Ganiny, A. 2020. Drugs with new lease of life as quorum sensing inhibitors: For combating MDR Acinetobacter baumannii infections. European Journal of Clinical Microbiology and Infectious Diseases 39(9): 1687-1702.

Selvaraj, A., Valliammai, A., Sivasankar, C., Suba, M., Sakthivel, G. & Pandian, S.K. 2020. Antibiofilm and antivirulence efficacy of myrtenol enhances the antibiotic susceptibility of Acinetobacter baumannii. Scientific Reports 10: 21975.

Stepanović, S., Vuković, D., Hola, V., Di Bonaventura, G., Djukić, S., Ćircović, I. & Ruzicka, F.  2007. Quantification of biofilm in microtiter plates. Apmis 115(8): 891-899.

Sun, D., Crowell, S.A., Harding, C.M., De Silva, P.M., Harrison, A., Fernando, D.M., Mason, K.M., Santana, E., Loewen, P.C., Kumar, A. & Liu, Y. 2016. KatG and KatE confer Acinetobacter resistance to hydrogen peroxide but sensitize bacteria to killing by phagocytic respiratory burst. Life Sciences 148(8): 31-40.

Thompson, M.G., Corey, B.W., Si, Y., Craft, D.W. & Zurawski, D.V. 2012. Antibacterial activities of iron chelators against common nosocomial pathogens. Antimicrobial Agents and Chemotherapy 56(10): 5419-5421.

Tilley, D., Law, R., Warren, S., Samis, J.A. & Kumar, A. 2014. CpaA a novel protease from Acinetobacter baumannii clinical isolates deregulates blood coagulation. FEMS Microbiology Letters 356(1): 53-61.

Vázquez-López, R., Solano-Gálvez, S.G., Vignon-Whaley, J.J.J., Vaamonde, J.A.A., Alonzo, L.A.P., Reséndiz, A.R., Álvarez, M.M., López, E.N.V., Franyuti-Kelly, G., Álvarez-Hernández, D.A., Guzmán, V.M., Bañuelos, J.E.J., Felix, J.M., Barrios, J.A.G. & Fortes, T.B.  2020. Acinetobacter baumannii resistance: A real challenge for clinicians. Antibiotics 9(4): 205.

Vijayakumar, S., Rajenderan, S., Laishram, S., Anandan, S., Balaji, V. & Biswas, I. 2016. Biofilm formation and motility depend on the nature of the Acinetobacter baumannii clinical isolates. Frontiers in Public Health 22(6): 105-112.

Wong, D., Nielsen, T.B., Bonomo, R.A., Pantapalangkoor, P., Luna, B. & Spellberg, B. 2017. Clinical and pathophysiological overview of Acinetobacter infections: A century of challenges. Clinical Microbiology Reviews 30(1): 409-447.

Wright, M.S., Mountain, S., Beeri, K. & Adams, M.D. 2017. Assessment of insertion sequence mobilization as an adaptive response to oxidative stress in Acinetobacter baumannii using IS-seq. Journal of Bacteriology 199(9): 1110-1128.

Zimmermann, P. & Curtis, N. 2018. The effect of aspirin on antibiotic susceptibility. Expert Opinion on Therapeutic Targets 22(11): 967-972.

Zimmermann, P. & Curtis, N. 2017. Antimicrobial effects of antipyretics. Antimicrobial Agents and Chemotherapy 61(4): e02268-16.

 

*Corresponding author; email: syaidatul@ukm.edu.my

 

 

 

previous next